Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Chess diagraf DB
Section C: Others
In section C is participated 9 entries from 9 authors from 6 countries.
List of entries:
Nr. |
Author |
Country |
Problems |
Count |
1 |
Bandžuch Imrich |
SVK |
h#2, h#5,5 |
2 |
2 |
Bourd Evgeni |
IZR |
ser-x10 |
1 |
3 |
Coakley Jeff |
CAN |
*mathematic |
0,5 |
4 |
Denkovski Ivan |
MAC |
PG 19,5 |
1 |
5 |
Frolkin Andrey |
UKR |
*mathematic |
0,5 |
6 |
Lörinc Juraj |
SVK |
mathematic |
1 |
7 |
Packa Ladislav |
SVK |
mathematic |
1 |
8 |
Skoba Ivan |
CZE |
h#5 |
1 |
9 |
Storisteanu Adrian |
CAN |
mathematic |
1 |
* co-autor
A rest nine problems I have assigned in this section. Because all problems are very specific I have decided to award each of them.
1st prize| section C
Juraj Lörinc
I. cena
Marián Križovenský 55 JT (C)
C 4.4.2016
No animated solution!
C
:
:
:
:
:
P
:
:
p
:
F
:
:
:
:
:
:
:
:
:
:
:
p
:
:
:
:
:
:
:
:
:
:
:
:
r
White king visits in series of moves all chessboard corners and returns to h1 in the shortest possible time.
How many solutions?
Detailed solution:
The distance between any two corners is the same, 7 moves. I.e. the theoretical minimal length of series is 28. Is such minimal roundtrip possible?
The join h1↔a8 is excluded as Pb7 and Ba6 guard each other. Also the route in direction a1→a8 is excluded as Sa8 and Pb7 guard squares a6, b6, c6, included in each shortest path a1→a8. But the opposite direction a8→a1 is allowed as Sa8 will be captured first, only then wK will pass through b6.
Thus a8 must be entered from h8 and bK must continue to a1. As a consequence we have formed the only possible sequence of corners h1→h8→a8→a1→h1, composed of 4 segments. Example of one specific journey:
white Pf7 Ph4 Kh1
black Sa8 Pb7 Ba6
1.Kh1-h2 2.Kh2-g3 3.Kg3-g4 4.Kg4-f5 5.Kf5-f6 6.Kf6-g7 7.Kg7-h8 8.Kh8-g8 9.Kg8-f8 10.Kf8-e8 11.Ke8-d7 12.Kd7-c8 13.Kc8-b8 14.Kb8*a8 15.Ka8-a7 16.Ka7-b6 17.Kb6-c5 18.Kc5-d4 19.Kd4-c3 20.Kc3-b2 21.Kb2-a1 22.Ka1-b1 23.Kb1-c1 24.Kc1-d1 25.Kd1-e1 26.Ke1-f2 27.Kf2-g1 28.Kg1-h1
Each of four segments of the king’s journey is independent of other, thus any specific journey in one segment is possible to combine with any journeys in other segments. As a consequence, it is enough to find number of ways from one corner to the following and then multiply these numbers.
How is it possible to find number of ways from corner to corner? For two neighbouring corners it is sufficient to realize the following principles, resulting in the recursive calculation. We will show the on the movement from corner (0,0) – e.g. a1 – to corner (7,0) – e.g. h1. We will denote number of ways to square (x,y) as P(x,y).
- There is exactly 1 possibility how the king can move in 0 moves from corner (0,0) to the same square, i.e. P(0,0) = 1.
- For squares that cannot be entered by king while moved from corner to corner and (for x < 0 or y < 0), i.e. for coordinates out of board, P(x,y) = 0.
- For all other squares while moving in direction from (0.0) to (7,0), the recursive formula holds:
P(x,y) = P(x-1, y-1) + P(x-1, y) + P(x-1, y+1).
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
0
0
0
a
2a+b
0
0
0
0
0
a
a+b
0
4a+4b+2c
0
0
0
b
a+b+c
2a+3b+2c
p
0
1
c
b+c
q
p+q
[Tabuľka 1]
(roh1 → roh2)
The following table demonstrates these rules with some examples (red cell denotes square that cannot be visited by the king).
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
1
4
:
:
:
1
3
9
25
:
1
2
5
12
30
76
:
1
1
2
4
9
21
51
127
[Tabuľka 2]
(roh1 → roh2)
In the case of the empty chessboard, the number of the shortest ways from corner to corner is 127 for neighbouring corners (as shown in the following table, empty cells correspond to zeros, as there is no even theoretical shortest way via them) and 1 for opposite corners (but this was already excluded in the present problem).
Let’s have a look now on the individual segments of the proposed journey of wK in the form of tables.
:
:
:
91
:
:
:
56
35
:
:
21
22
13
:
:
4
9
8
5
:
:
1
3
5
:
:
:
1
2
2
:
:
:
1
1
:
:
:
:
1
11
11
11
5
2
2
1
1
:
:
6
3
1
:
0
1
1
:
:
:
0
0
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
1
:
:
:
:
1
:
:
:
1
0
:
:
:
1
1
0
:
:
1
2
1
:
:
3
3
3
:
:
6
9
:
:
:
15
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
1
1
:
:
:
1
6
7
:
1
2
5
15
22
:
1
1
2
4
9
15
37
As the last step of solution it is necessary to multiply results for individual segments, to get the total number of solutions:
91 x 11 x 15 x 37 = 555 555.
2nd prize| section C
Evgeni Bourd
II. cena
Marián Križovenský 55 JT (C)
C 4.4.2016
No animated solution!
C
:
C
:
T
:
:
:
:
:
:
:
:
:
R
:
p
:
D
:
:
:
:
:
:
:
p
p
:
p
:
r
:
:
:
:
:
White does all moves and needs to capture in 5+5 moves.
No short solutions.
How many solutions?
Solution
Evgeni Bourd
II. cena
Marián Križovenský 55 JT (C)
C 4.4.2016
white Pd5 Pg3 Pa2 Pd2 Kg2
black Sa8 Sd8 Rg8 Ka5 Qg5
1.a2-a4 2.Kg2-f3 3.Kf3-e4 4.Ke4-d4 5.Kd4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.a2-a3 2.Kg2-f3 3.Kf3-e4 4.Ke4-d4 5.Kd4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.d2-d3 2.Kg2-f3 3.Kf3-e4 4.Ke4-d4 5.Kd4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f1 2.Kf1-e2 3.Ke2-d3 4.Kd3-c4 5.Kc4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f1 2.Kf1-e2 3.Ke2-d3 4.Kd3-d4 5.Kd4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.a2-a4 3.Kf3-e4 4.Ke4-d4 5.Kd4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.a2-a3 3.Kf3-e4 4.Ke4-d4 5.Kd4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.d2-d3 3.Kf3-e4 4.Ke4-d4 5.Kd4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e2 3.Ke2-d3 4.Kd3-c4 5.Kc4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e2 3.Ke2-d3 4.Kd3-d4 5.Kd4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.a2-a4 4.Ke4-d4 5.Kd4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.a2-a3 4.Ke4-d4 5.Kd4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.d2-d3 4.Ke4-d4 5.Kd4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.g3-g4 4.Ke4-d4 5.Kd4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d3 4.Kd3-c4 5.Kc4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d3 4.Kd3-d4 5.Kd4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.a2-a4 5.Kd4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.a2-a3 5.Kd4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.d2-d3 5.Kd4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.g3-g4 5.Kd4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.a2-a4 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.a2-a3 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.d2-d4 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.d2-d3 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.g3-g4 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.a2-a4 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.a2-a3 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.d2-d4 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.d2-d3 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.g3-g4 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.Kd6-d7 7.a2-a4 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.Kd6-d7 7.a2-a3 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.Kd6-d7 7.d2-d4 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.Kd6-d7 7.d2-d3 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.Kd6-d7 7.g3-g4 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.Kd6-d7 7.d5-d6 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.Kd6-d7 7.Kd7-c8 8.a2-a4 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.Kd6-d7 7.Kd7-c8 8.a2-a3 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.Kd6-d7 7.Kd7-c8 8.d2-d4 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.Kd6-d7 7.Kd7-c8 8.d2-d3 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.Kd6-d7 7.Kd7-c8 8.g3-g4 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.Kd6-d7 7.Kd7-c8 8.d5-d6 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.Kd6-d7 7.Kd7-c8 8.Kc8-b8 9.a2-a4 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.Kd6-d7 7.Kd7-c8 8.Kc8-b8 9.a2-a3 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.Kd6-d7 7.Kd7-c8 8.Kc8-b8 9.d2-d4 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.Kd6-d7 7.Kd7-c8 8.Kc8-b8 9.d2-d3 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.Kd6-d7 7.Kd7-c8 8.Kc8-b8 9.g3-g4 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.Kd6-d7 7.Kd7-c8 8.Kc8-b8 9.d5-d6 10.Kb8*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c5 5.Kc5-d6 6.Kd6-d7 7.Kd7-c8 8.Kc8-b8 9.Kb8-a7 10.Ka7*a8 {x}
1.Kg2-f3 2.Kf3-e4 3.Ke4-d4 4.Kd4-c4 5.Kc4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f3 2.g3-g4 3.Kf3-e4 4.Ke4-d4 5.Kd4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f2 2.Kf2-e2 3.Ke2-d3 4.Kd3-c4 5.Kc4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f2 2.Kf2-e2 3.Ke2-d3 4.Kd3-d4 5.Kd4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.Kg2-f2 2.Kf2-f3 3.Kf3-e4 4.Ke4-d4 5.Kd4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
1.g3-g4 2.Kg2-f3 3.Kf3-e4 4.Ke4-d4 5.Kd4-c5 6.Kc5-d6 7.Kd6-d7 8.Kd7-c8 9.Kc8-b8 10.Kb8*a8 {x}
3rd prize| section C
Adrian Storisteanu
III. cena
Marián Križovenský 55 JT (C)
C 4.4.2016
No animated solution!
:
:
:
:
:
:
:
:
de
:
:
:
:
:
a)
Add QQQQ for a symmetrical position of five guarded pieces with 55 moves
b)
Add KQQQ for a position of five unguarded pieces with 55 moves
The wQ already provided in the diagram ensures a unique solution, out of the possible rotated and reflected settings. A better alternative to the term ‘guarded’ (or ‘defended’), commonly used in such construction tasks, might be ‘observed’ (especially given the presence of a K in twin b).
Solution
Adrian Storisteanu
III. cena
Marián Križovenský 55 JT (C)
C 4.4.2016
No animated solution!
:
:
de
:
de
:
:
de
:
de
:
:
:
:
de
a)
There are 18 base positions (not counting the usual rotations and reflections, that is) of 5 guarded Qs with 55 available moves on a 5x5 board. Only one setting is symmetrical. The given wQ in the diagram is not on the axis of symmetry of the final position, which may complicate a potential solver’s attempts!?...
Adrian Storisteanu
III. cena
Marián Križovenský 55 JT (C)
C 4.4.2016
No animated solution!
:
:
r
de
:
:
:
de
:
de
:
:
:
de
:
b)
There is one base position of unguarded K + 4Qs that have a total of 55 possible moves on a 5x5 board.
1st honourable mention| section C
Andrey Frolkin
Jeff Coakley
1. čestné uznanie
Marián Križovenský 55 JT (C)
C 4.4.2016
No animated solution!
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
F
:
i
e
I
s
:
f
V
v
E
S
:
Each letter represents a different type of piece.
Upper case is one color, lower case is the other.
Determine the position.
[C5a]
See the text → (5+5)
Solution
Andrey Frolkin
Jeff Coakley
1. čestné uznanie
Marián Križovenský 55 JT (C)
C 4.4.2016
No animated solution!
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
D
:
r
f
R
c
:
de
T
t
F
C
:
There are five pairs of letters on the board: F/f I/i V/v E/e S/s ('fives'). Of these, only I/i occupy non-adjacent squares. This means that they are kings. If v is a queen or a bishop, the king on e2 is in illegal check from vd1. Thus two options remain for V/v: knight or rook. If this letter stands for a knight, E/e can only represent a bishop; otherwise Ke2 is in illegal check from Ee1. The remaining vacancies are queen and rook; in both cases (F/f = queen, S/s = rook or vice versa) the kings are in check simultaneously, which is impossible. Therefore, V/v = rook. The king on c2 is in check; if e or s represents a queen, the other king is also in check; hence one of these letters is a knight and the other is a bishop. If Ee1 is a knight, then Kc2 is in illegal double check from Rc1 and Se1. So E/e = knight and S/s = bishop. The only possibility remaining for F/f is to represent the queens. Again the king on c2 is in double check, but this time it is legal because last move must have been b2xR/B/Sc1=R++!
2nd honourable mention| section C
Ladislav Packa
2. čestné uznanie
Marián Križovenský 55 JT (C)
C 4.4.2016
white Pa2 Pb2 Pc2 Kf2 Pg2
black Pa5 Pb5 Pc5 Kf5 Pf3
a) {White to move}
1.a2-a3 {(1)}
1.a2-a4 {(2)}
1.b2-b3 {(3)}
1.c2-c3 {(4)}
1.c2-c4 {(5)}
b) {Black to move}
1.Kf5-e5 {(1)}
1.Kf5-e6 {(2)}
1.Kf5-f6 {(3)}
1.Kf5-g5 {(4)}
1.Kf5-g6 {(5)}
3rd honourable mention| section C
Ivan Skoba
3. čestné uznanie
Marián Križovenský 55 JT (C)
C 4.4.2016
No animated solution!
:
R
c
:
T
:
:
F
:
:
:
:
r
:
:
a)
1.Rb4-b3 Sc5*b3 2.Bc3-b4 Sb3-d2 3.Kb5-c5 Kb1-c1 4.Kc5-d5 Sd2-b1 5.Bb4-c5 Sb1-c3 #
Ivan Skoba
3. čestné uznanie
Marián Križovenský 55 JT (C)
C 4.4.2016
No animated solution!
:
R
c
:
:
T
:
:
F
:
:
:
:
r
:
:
b)
1.Bc3-d2 Sc5-b3 2.Bd2-c3 Sb3-d2 3.Kb5-c5 Kb1-c1 4.Rb4-b5 Kc1-b1 5.Bc3-b4 Sd2-b3 #
– H#5, twin
– board 5 x 5
– in every position altogether 5 pieces
– symbolic problem (55)
1st commendation| section C
Imrich Bandžuch
1. pochvalná zmienka
Marián Križovenský 55 JT (C)
C 4.4.2016
No animated solution!
:
:
:
:
:
r
:
:
F
:
T
:
:
T
:
:
R
c
F
R
c
p
:
C
:
:
C
:
:
p
:
r
p
P
f
:
p
C
f
:
:
:
:
:
Symbol 55 (two fives)
Riešenie
Imrich Bandžuch
1. pochvalná zmienka
Marián Križovenský 55 JT (C)
C 4.4.2016
white Kb7 Sb5 Sf5 Pg5 Pc3 Kg3 Pa2 Bc2 Pe2 Bg2
black Bf7 Ra6 Re6 Ka5 Bc5 Ke5 Sc4 Sg4 Pb2 Sf2
a) {Prvá 5-ka}
1.Sc4-a3 Sb5-d6 2.Sa3-b5 Sd6-c4 #
b) {Druhá 5-ka}
1.Bf7-g6 Sf5-h6 2.Bg6-f5 Sh6-f7 #
2nd commendation| section C
Ivan Denkovski
2. pochvalná zmienka
Marián Križovenský 55 JT (C)
C 4.4.2016
white Bc1f1 Ke1 Qd1 Pa2b2c2d2e2f2g2h2 Sb1g1 Ra1h1
black Bc8f8 Ke8 Qd8 Pa7b7c7d7e7f7g7h7 Sb8g8 Ra8h8
1.e2-e3 d7-d5 2.Bf1-d3 d5-d4 3.Bd3-g6 Bc8-f5 4.d2-d3 Bf5-e4 5.d3*e4 h7*g6 6.Qd1-d3 Rh8-h3 7.Qd3-a3 d4-d3 8.g2*h3 d3-d2+ 9.Ke1-e2 d2-d1=S 10.Sb1-d2 Sd1-c3+ 11.b2*c3 b7-b5 12.Bc1-b2 b5-b4 13.Ra1-d1 b4-b3 14.Bb2-a1 b3-b2 15.Sd2-f3 {display-departure-file} b2-b1=R 16.Rd1-d7 Rb1-b5 17.Ke2-d3 Rb5-f5 18.e4*f5 c7-c5 19.Kd3-e4 Sb8-c6 20.Rd7-b7 {diagram}
3rd commendation| section C
Imrich Bandžuch
3. pochvalná zmienka
Marián Križovenský 55 JT (C)
C 4.4.2016
white Pa2 Kb2
black Rb8 Pb7 Bh7 Pc6 Kg6
White SPc2
White SPa1
White SPc1
1...a2-a4 2.b7-b5 a4*b5 3.Rb8-g8 b5*c6 4.Kg6-h5 c6-c7 5.Rg8-g5 c7-c8=Q 6.Bh7-g6 Qc8-h3 #
1...SPc2-c4 2.b7-b5 SPc4*b5 3.Rb8-g8 SPb5*c6 4.Kg6-h5 SPc6-c7 5.Rg8-g5 SPc7-c8=Q 6.Bh7-g6 Qc8-h3 #
Author’s solution:
After first solution, i.e. after 4th of Aprile life jogs to the second 55, sleeping pawn “c2” stands up and goes in the way of life – no very different from that first…
2 identical solutions are because even second 55 after 4th of Aprile to look like of that first!
If you dont like sleeping pawns “a1, c1”, you have there 2 nice white promoted queens – together white pieces are also 5!
If you would like change anything in your life, only replace pawns “a2, c2” by substituted pawns from “a1, c1”. Entranced new pawns not change the solution, because destiny of life is given and goes in its predestinated road just on and on…
Marián Križovenský
Bratislava, April – June 2017
Author sent me this problem first without solution to try solve it myself. After about two hours I have concluded I have found a solution algorithm and I estimated outcome as 5555. Wenn I then looked at authors solution, I find that my appraisal was exactly 100 times smaller.
Perfect symbiosis of author’s background as mathematician as well as chess composer. It is here more problems with similary stipulation of count of solution but outcome of this problem is amazing. Doubtless deserved first prize!